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SOLUTION OF THE PERCUS-YEVICK 
EQUATION FOR LINEAR MOLECULES 

INTERACTING THROUGH EITHER A KIHARA OR A 
SOFT REPULSIVE POTENTIAL 

P. SEVILLA*, S. LAGOS, C. VEGA and P. PADILLA 

Dpto. Quimica Fisica, Far. Ciencius Quimicas, Univ. Complutense, 
28040 Mudrid, Spuin. 

( Receiced I MUJ. 1990) 

We have solved the Ornstein-Zernike equation with the Percus-Yevick closure for soft spherocylinders 
interacting through either a soft repulsive potential or a Kihara one. The used algorithm is the same we 
presented before in a previous paper for hard spherocylinders. Structural properties and a complete study 
of the behaviour of the pair correlation function with the orientation, density and elongation of the systems 
are presented. The pair correlation function directly obtained subsequently allows the few first coefficients 
of the expansion in spherical harmonics to  be obtained and we have performed Monte Carlo simulation 
to compare them and make a check of the adequacy of the Percus-Yevick equation for these systems. 
Also thermodynamic properties such as the equation of state and internal energy have been calculated 
and we have compared some of these values with available simulation results. The conclusion is similar 
to that for hard spherocylinders: namely that the Percus- Yevick closure does not represent the orienta- 
tional part of the pair correlation function very well for all the system studied. However, in obtaining the 
thermodynamic properties these errors are compensated, and the accuracy obtained is good. 

KEY WORDS: Orientational correlations, equation of state, Monte Carlo simulation 

I INTRODUCTION 

The theoretical study of molecular fluids has been greatly developed during the last 
decades'. Several non-central interaction models have been proposed, and we could 
affirm that among them, the multi-center interaction site model2 (ISM) has received 
considerable attention. However, during the last few years, other potential models 
have appeared to study the convex bodies, namely Kihara3 or Gaussian overlap4 
models. 

For the Kihara model the potential function depends only on the shortest distance 
between molecules, and its greatest advantage is that complexity does not aggravate 
with number of atoms of the molecule as occurs with the ISM. However, it is not 
so simple to use and a big problem appears in calculating the shortest distance 
between convex bodies; this is the principal reason why until now it has not been 

* Present address: Dpto. Quimica Fisica Farmacehtica, Fac. Farmacia, Univ. Complutense, 28040 
Madrid, Spain. 
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2 P. SEVILLA et al. 

commonly used in solving integral equations. Unfortunately, only scarce theoretical 
ways to evaluate the properties of soft convex bodies are available. Using severe 
approximations the average correlation function has been but not the 
pair correlation function. Also several perturbation theories have been developed 
for these models by Boublik8s9 and more recently by Padilla and Lago" where 
the structure of the reference system i s  calculated using different approaches. So we 
have considered it advantageous and interesting to study thoroughly these models, 
and due to the fact that the properties of the reference system, both structural and 
thermodynamical must be known in a perturbation scheme, these systems are also 
of great interest. 

In a series of previous we have presented a method of solving the 
Percus-Yevick equation' (PY) for systems consisting of hard spherocylinders. 
Hard spherocylinders can be thought as the parallel convex bodies to a rectilinear 
segment which forms the axis of the cylindrical part of the spherocylinder. Compar- 
ison of our results with Monte Carlo simulation showed a nice agreement for not 
very large elongations but also important shortcomings, and conclusions were in 
agreement with those of Perera and Patey14 who using a different algorithm, have 
also solved the PY equation for longer hard spherocylinders. Our particular solution 
method is based in using a fast algorithm to calculate shortest distances between the 
cylindrical axes' 5 .16 .  Thus, our algorithm could be applied not only to hard 
spherocylinders but also to any other system interacting through a more general 
intermolecular potential. In this paper we study the repulsive branch of Kihara 
potential, named reference potential in a WCA' 7-like division of the Kihara potential, 
and the full Kihara. The main purpose of this paper is to find out how the PY 
equation can explain the structural and thermodynamic properties of systems of soft 
spherocylinders and those of systems interacting with a realistic potential. 

The general experience for simple fluids is that the PY equation yields good results 
for soft repulsive spherical potentials" and we are interested now in finding out 
which features of the agreement are kept for soft anysotropic systems. Quite luckily, 
Vega and Frenkel' and Kantor and Boublik" have recently performed some 
simulations of these systems with two different elongations for the repulsive and also 
for a complete Kihara potential. Moreover, we ourselves have carried out some 
additional Monte Carlo simulations. We show here all the results allowing a complete 
picture of the behaviour of the PY equation for different orientations, elongations 
and densities using the cited repulsive and complete Kihara potential. For one of the 
repulsive systems, two different temperatures have been used. So the paper schedule 
is as follows: we shall shortly review in Section I1 the basis of the used algorithm, 
emphasising the differences with the case of hard spherocylinders. Section 111 is 
devoted to show our results for the pair correlation function (PCF) for some selected 
mutual orientations. Section IV shows the few first spherical harmonic coefficients 
in the expansion of the PCF comparing them with the available simulations. In 
Section V, the results for the thermodynamic functions directly obtainable from the 
PCF, namely internal energy and virial pressure, are shown and also compare with 
available simulation. Lastly, Section VI is devoted to a general discussion of the 
adequacy of the method for these systems. 
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PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 3 

I1 THEORY AND SYSTEMS STUDIED 

In this work the PY equation has been solved for a system of linear molecules 
modelled by linear segments, namely rods, of length L whose intermolecular inter- 
actions are given by: 

- (a/p)‘ + b] ifp < 2I’‘a ( la)  
ifp > 2I’‘a ( lb) 

(2) 

U O ( P )  = 

for the soft repulsive system; and by a Kihara potential determined by: 

4 P )  = 4EC(a/P)I2 - (a/P)61 

in the realistic system. 
In the above equations p is the shortest distance between rods modelling molecules. 

For two molecules i and j it depends on the shortest distance between molecular 
centers and on the relative orientation, that in our case are determined by polar 
coordinates R,, ,  Bij. and 4ij and the two orientational angles aij and Pij all described 
in Ref. 11. Magnitudes a and e are potential parameters with dimensions of length and 
energy respectively. 

We defined the reduced magnitudes L* = L/a, the packing fraction q = nu,, where 
n is the numerical density of the system and u, is the volume of a spherocylinder of 
length L and diameter a. The reduced temperature T* = T/(E/k) being k the 
Boltzmann constant and T the absolute temperature. In general we reduce length 
magnitudes by 0 and energy magnitudes by E. 

The PCF of this system can be obtained solving the Ornstein-Zernike” equation 
(OZ): 

w I , ~ l > w , )  = c(R12, w1. w2) + ( n / W  

x j h ( R 2 3 ,  0 2 9  m,)c(R13,  OI? w 3 ) d R 1 3 d o l d w 3  (3) 

where h(Ri,  w,, wi) is the total correlation function, and c(Ri j ,  wi, Q,) is the direct 
correlation function; C2 is a normalization integral whose value for linear molecules, 
as is our case, is 47c. Finally Rij  and wi are positional and orientational coordinates 
respectively. 

An additional closure relation is also required and we have chosen the PY closure 
defined as: 

y ( R I 2 ,  0 1 9  ~ 2 )  = 4 R 1 2 ,  ~ 1 3  W Z )  - ~ ( R I z ,  ~ 2 )  (4) 

where 

y ( R I 2 ,  ~ 1 ,  ~ 2 )  = ( “ 1 ,  ~ 1 ,  wz)  + 1) exP(b’4~)) (5 )  

here ,!l is as usual ( k T ) - ‘ .  

h (Ri j ,  wi, wj),  as: 
Finally, the PCF, g(R,,, w,, w,), is defined in terms of the total correlation function 

g(RI2 ,  ( f l l r  0 2 )  = NRiZ,  c f i i ,  0 2 )  + 1 (6) 
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4 P. SEVILLA rt al. 

Our particular solution method for solving equation (3) using (4) as closure 

1) Computation of pi j  as a function of R,,, Oij, q5ij, aij  and Pi,. 
2) Calculation of the positior? and orientation of the molecule 2 respect molecule 

3, assumed known the position and orientation of molecule 1 respect molecule 2 and 
of molecule 3 respect molecule 1. 

3) The use of a good expression for the interpolation of the PCF as depending on 
the angles. 

4) The use of a good initial approximation for the PCF. 
5 )  An algorithm guaranteeing the convergence of the solution through the different 

iterations. 

Every detail of the solution of the integral equation is similar to that of the solution 
of the equation for hard spherocylinders models, and has been described elsewhere' '. 
The integration algorithm of the PY equation have been that of Conroy" using 6044 
grid points. Curves have been smoothed down using a plines subroutine, so maximum 
error can be estimated in a 5%. The PCF has been obtained for four selected relative 
orientations, namely head-to-tail, parallel, crossed and T respectively. 

A total of six systems interacting with a soft repulsive potential given by Eq. (1) 
have been studied. Five of them correspond to a soft repulsive system modelling N , ,  
where the parameters used arez3 L = 0.93 A, 0 = 3.207 A and Elk = 117 K. The last 
system correspond to a longer one. The corresponding packing fractions and 
parameters are given in the first three columns of Table 1. 

requires: 

Table I 

T* L* 'I 7heory Simulation 

U / N k T  P V / N k T  U / N k T  P V / N k T  
~~ 

1.075 0.2899 0.2 0.150 1.43 0.150 2.54 
1.35 0.2899 0.2 0.164 1.45 
1.35 0.2899 0.1 0.057 1.16 
1.35 0.2899 0.4 0.812 3.05 - 
1.35 0.2899 0.3 0.405 2.08 
1.35 1.0 0.3 0.170 1.99 0.271 - 

- - 
- - 
~ 

- - 

Values of the thermodynamic properties of the systems studied that interact with the 
soft repulsive part of a Kihara potential. 

For systems whose intermolecular interactions corresponds to a Kihara potential 
given by Eq. (2) the packing fractions and parameters are shown in Table 2. Two of 
them correspond to a realistic model of N ,  with the same parameters cited before 
and the last one corresponds to a more elongated system which has been simulated 
by Kantor*'. 
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PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 5 

Table 2 

T* L* '1 Theory Simulurion 

UiNkT PViNkT U/NkT PViNkT 

1.35 0.2899 0.1 - 0.88 0.87 - ~ 

1.35 0.2899 0.2 - 1.66 0.85 ~ 1.67 0.63 
1 .o 1 .o 0.3351 -3.48 1 .ox - 3.43 0.98 

Values of the thermodynamic properties of the systems studied that interact with a Kihara 
potential. Simulations of last row correspond to Ref. 20. 

I11 RESULTS O F  THE PAIR CORRELATION FUNCTION (PCF) 

The studied systems allow us to make a complete description of the behaviour of 
the PCF with the orientation in all the thermodynamic conditions. For every 
orientation the study has been made with density and elongation for soft repulsive 
systems and with the density for the real systems. 

In all the cases irrespective of the potential or the thermodynamic conditions the 
PCF is a continuous curve with a first maximum at a distance close to Rij = 21'60 
for parallel and crossed position, 21'60 + (L/2) for T position and 2lI60 + L for 
head-to-tail. That corresponds to the depth well of the potential for every orientation 
and it has very different PCF value for every one. A second maximum is observable 
in some systems but this is always much more smaller than the first one and in 
contrast to this has almost the same value for all the possible orientations and 
systems, although it can be remarked than in the cases of the Kihara potential, it is 
higher than in the cases with the truncated one. 

We begin to describe the behaviour of the soft repulsive systems. Figure 1 shows 
the values of the PCF for the four principal relative orientations and one of the 
systems of the Table 1 ;  according to this figure the maximum value corresponds to 
the parallel position closely followed by crossed and head-to-tail and T positions 
form a second group. This behaviour is common to all the systems, and the differences 
between both the two groups increases with the density or elongation. We have found 
already for hard spherocylinders the separation of the PCF in these two groups' ' - I 2 ,  

and it has not disappeared for soft potentials. 
In Figure 2 we can estimate the variation of the PCF with the density for parallel 

orientation; qualitative analogue graphs have been obtained for the other orienta- 
tions and we can say that extremes become more manifest when the density increases, 
being this effect more pronounced for the most favourable situations. To corroborate 
this point we can compare the differences of the values of the PCF corresponding 
to the first maximum for two different densities from the figure, between q = 0.2 and 
q = 0.1 we have (g,)lt;,2, - (gp):ix = 0.66, between q = 0.3 and q = 0.2 we have 
(gp)::x - (gp)::x = 1.50 and finally, between q = 0.4 and q = 0.3 we have (gp)E:x 
- (gp)::x = 1.89; similar numbers for the same differences have been obtained for 
crossed orientation. Whereas the results of the PCF give for head-to-tail (gp)k:x 
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0.6 
I I I I 

1 1.6 2 
R Tj 2.6 3 

Figure I 
rl = 0.03. Gross line parallel, dashed line crossed, dotted line T position, solid line head-to-tail. 

Values of the PCF for systems interacting with a soft repulsive potential, T* = 1.35, L* = 0.2899, 

- (gp)::x = 0.42; (gp)::x - 1.00, and finally (gp):L - (gp)k:x = 1.47, and similar values 
are obtained for T orientation. 

There are two different behaviours of the PCF with the elongation of the 
spherocylinder for the orientations studied. Figure 3 shows variation of parallel and 
T position that represent the two behaviours. While for parallel and crossed the PCF 
decreases when elongation does it; for head-to-tail and T the PCF increases when 
elongation decreases. For the longer elongation the values corresponding to the first 
maximum of the PCF are very different for every orientation, these values become 
similar when the elongation decreases, and the dependence with the orientation tends 
to disappear. Also the order in the magnitude of this value varies from one elongation 
to the other, while for L* = 1.0 we can say that (gp)max > (gcr)max > (gTlmax > (ght)max 
this classification for L = 0.2899 is (gp)max > (gcr)max > (ghtImax > (gT)max, anyway 
we can continue establishing two different groups for the PCF, one for parallel and 
crossed orientation and the other for head-to-tail and T orientation. This peculiar 
conduct was already found in hard systems, and it is not surprising at all. We have 
to comment that for all the cases we obtain different values for g p  and g E r ,  which is 
a better result than that obtained from zero and first order RAM perturbation 
theories24 that suppose the PCF independent of polar angle $ i j .  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



7 PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 

0.6 1 1.6 2 
R :j 

2.6 3 

Figure 2 
L* = 0.2899. Gross line ti = 0.4. dashed line ti = 0.3, solid line 4 = 0.2. dotted line 4 = 0.1. 

Values of the parallel PCF for systems interacting with a soft repulsive potential, T* = 1.35, 

Results for different temperatures in the system with L* = 0.2899 and '1 = 0.2 give 
no significant different values for the PCF between both temperatures. In the four 
relative positions differences with the temperature have the same order as our 
algorithm error, so we cannot establish its influence in these systems. This may be 
due to the fact that influence of temperature is always smaller than that of density 
or  elongation and working with a small density, as is our case, the differences cannot 
be detected with our algorithm. 

Respect to the realistic potential results are not too different, Figure 4a shows 
results for the largest system and 4b for N ,  system. The PCF for the N ,  model 
presents only one remarkable maximum and minimum for every orientation and 
every density. The differences between these two extremes increase with density, and 
similarly to soft repulsive potentials or hard systems the increment is bigger for 
parallel and crossed orientation, about ten times more than for the other two, and 
those are in any case the favourite. For the third system, the longest one, comments 
are similar, but a second noticeable maximum appears, even though relative to the 
first is almost contemptible. 

Due to the fact that radial slices from simulations for the PCF exist only for hard 
spherocylinders we cannot compare directly our results. We can remark with 
reference to the PCF that for apolar systems and soft potentials favourite position 
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8 P. SEVILLA et al. 

4 

0.6 1 1.6 2 
R *ij 

2.6 3 

Figure 3 Values of the PCF for systems interacting with a soft repulsive potential and q = 0.03. Solid 
line T position, T* = 1.35, L* = 0.2899. Dashed line T position, T* = 1.35, L* = 1.0. Gross line parallel. 
T* = 1.35, L* = 1.0. Dotted line parallel, T* = 1.35, L* = 0.2899. 

is parallel as occurs in hard models", and was expected from the potential23. Also 
the values for the realistic systems are higher in every case than those interacting 
with a repulsive potential, this corroborate the role of the attractive forces in 
determining the structure of molecular fluids, as occurs for molecular mixturesz5, if 
we think in the range of low densities we study in this work. 

IV RESULTS FOR THE SPHERICAL HARMONIC COEFFICIENTS 
O F  THE PAIR CORRELATION FUNCTION (SHC) 

The PCF calculated with Eq. (6) gives the expansion of the correlation function in 
spherical harmonic (SHC) using the formulae26 for homonuclear molecules: 

Y 1 I , r n ( ~ 1 2 )  = 4 {i {ol {01g(~123 01, ( 0 2 ) ~ 1 ,  -rn(oi* O)yl,,rn(o;, 4iz) 

x d cos e id  cos tY2d4;, (7) 
where q5i2 = 4; - 4;. 
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PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 

1 2 3 
R *.. 

‘I 

9 

R *ij 

Figure4 Values of the PCF for realistic systems interacting with a Kihara potential. a)  T* = 1.0, L* = 1.0, 
9 = 0.3351. Gross line parallel. Dotted line crossed. Dashed line T position. Solid line head-to-tail. b) 
Parallel orientation PCF. T* = 1.35, L* = 0.2899. Dashed line 9 = 0.2. Dotted line 9 = 0.1. 

The angular coordinates in Eq. (7) are related with those used in this work by 

H; = o, ,  (8) 

@l2 = B 1 2  (9) 

(10) cos e; = cos B I 2  cos(o,, + q2) 
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21 

0.6 1 1.6 2 
R*.. 

IJ 

2.6 3 

Figure 5 Comparison between simulation (dots) and theory (lines) for qooo(r). Solid line realistic potential, 
T* = 1.35, L* = 0.2899, = 0.2. Dashed line soft repulsive potential, T* = 1.35, L* = 0.2899, '1 = 0.2. 
Dotted line soft repulsive potential, T* = 1.35, L* = 1.0, '1 = 0.3. 

The integration method for solving (7) was Conroy method, as used before, with 
6044 grid points; integrals were truncated in 4a taking the PCF as 1 beyond this 
limit irrespectively of the orientation as we have obtained before. Interpolation 
formulae for the PCF are the same used in the solution of the PY equation, even if 
we are conscious, from results of hard systemsI2 that error in interpolating with this 
formulae may be important. 

Results obtained for gOo0(r)  and its comparison with simulation for three of the 
systems studied, are shown in Figure 5. Two of the systems correspond to a soft 
repulsive potential and the third one to a realistic potential. 

Simulation has been carried out using Monte Carlo method27, conditions are 
described in Ref. 19 for the N ,  models and in Ref. 12 for L* = 1.0 system. 

We can observe that concordance is qualitatively and quantitively good in all cases 
even for long elongations although interpolation formulae was not the best one. 
However, results for the second SHC gzo0(r)  are not so good, they can be seen in 
Figure 6.  In this case prediction is only qualitative if we consider qualitative to obtain 
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PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 11 

0.2 

0 - .- *-  
LT 
I 

0 
N 

m 
0 -0.2 

- 0.4 

- 0.6 
0.6 1 1.6 2 2.6 3 

R *ij 
Figure 6 Comparison between simulation (dots) and theory (lines) for ~ o o o ( r ) .  Solid line realistic potential, 
T* = 1.35, L* = 0.2899, q = 0.2. Dashed line soft repulsive potential, T* = 1.35, L* = 0.2899, 7 = 0.2. 
Dotted line soft repulsive potential, T* = 1.35. L* = 1.0, q = 0.3. 

the position and relative order of the extremes but not the absolute value. For the 
third SHC, g z z O ( r ) ,  we have obtained results whose concordance is also qualtitative 
uniquely. From this we can evidence as for hard sphe r~cy l inde r s '~ - '~  that orienta- 
tional part of the potential is not well represented by the PY equation, although we 
also have to take into account the influence of the approximations used for solving 
the integral equation. 

The aspect and behaviour of goo0(r) for soft repulsive and realistic potential is 
presented in Figures 7 and 8 respectively. We observe that the value of the first 
maximum decreases when elongation increases and when density decreases, this 
means that positional structure becomes less important when elongation increases, 
oppositly orientational structure becomes more important, because extremes of the 
next SHC become more pronounced when elongation increases. We can say, then, 
that PY is more accurate to represent not long molecules, where positional structure 
is more important than the orientational one. 
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12 P. SEVILLA et a1 

0.6 1 1.6 2 
R*ij 

2.6 3 

Figure 7 
L* = 0.2899,~  = 0.3. Grossline T* = 1.35, L* = 0.2899,~  = 0.2. Dotted line T* = 1.35, L* = 1.0, v = 0.3. 

Values of gooo(r) for systems interacting with a soft repulsive potential. Solid line T* = 1.35, 

V THERMODYNAMIC PROPERTIES 

Once the PCF is obtained the equation of state (EOS) and the internal energy are 
straightforwardly obtained for soft spherocylinders from the well-known formulae2 : 

P = ( N k T / V )  - n2/(6kTvQ2) R1z(Riz ,  m i ,  wz)(WRiz ,  wz)/6Riz) 

(1 1) 

s 
x g(R12, 0 1 ,  w2)dR12dw,dw2 

and 

The integration algorithm in the Eqs. (11 )  and (12) has been that of Conroy as in 
the PY equation, using 6044 grid points. Integrals were truncated in 4a taking the 
PCF as 1 beyond this limit for the same reason we explained before. The interpolation 
formulae for the PCF has been the same used in (4) for solving the PY equation. 

The values of the comprehensibility factor and internal energy obtained for the 
different systems are shown in Table 1 for soft repulsive potentials and in Table 2 
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13 PERCUS-YEVICK EQUATION FOR LINEAR MOLECULES 

0.6 1 1.6 2 
R ‘ij 

2.6 3 

Figure 8 Values of gooo(r)  for systems interacting with a realistic potential. Solid line T* = 1.0, L* = 1.0, 
q = 0.3351. Dashed line T* = 1.35, L* = 0.2899, 7 = 0.2. Dotted line T* = 1.35, L* = 0.2899, q = 0.1. 

for realistic ones. Some values are compared with those obtained by simulation. The 
internal energy is coincident in all cases except in one. For the EOS the theory gives 
values that differ from the simulation with bigger errors. Results are good, and this 
make think that the possible errors coming from the inexact values of the PCF 
cancelled themselves and become less important in calculating Eqs. (1 1) and (12). 

VI DISCUSSION OF RESULTS 

We have obtained numerical values for the PCF for a reference WCA and a Kihara 
potential; from the PCF the few first SHC and thermodynamical properties: equation 
of state and internal energy have also been calculated. Similarly to atomic liquids”, 
for all the orientations, at low densities the repulsive potential gives lower values of 
the PCF than for the realistic system, and evidence that repulsive forces do  not 
determine totally the structure of molecular liquids at low densities. For apolar linear 
systems in all the studied thermodynamic conditions the most favourite position is 
the parallel. At the density and length used difference with temperature has the order 
of magnitude of the error of the algorithm. The concordance of the SHC with the 
simulation is excellent for gOo0(r) regardless of the elongation but it  is only qualitative 
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for g200(r)  and gzz0(r ) .  These results were found previously for hard sphero- 
cylinders” and indicate that also for these systems the orientational structure is not 
very well represented in the PY equation. One factor could be due to the fact that 
we use a simple interpolation formula, but we have to remark that this is not the 
only cause of error, because the same interpolation has been good enough to obtain 
concordant values for gooo(r). These errors can compensate when used below the 
integral sign and the internal energy of the systems can be predicted more accurately 
for short molecules and low and intermediate packing fractions as occurs with the 
case of perturbation the~ries’~.’. The equation of the state of systems is worse than 
predicted and the discrepancies bigger in the case of the soft repulsive potential. 
Finally, we present here a way to solve the PY equation for systems interacting 
through soft potentials and obtain theoretically, and using only small approxima- 
tions, structural and thermodynamic properties of realistic systems like N , .  The 
algorithm can also be applied for studied reference systems, which can be used in a 
perturbation scheme. To improve these results we propose either the use of different 
closure equations or of better interpolation formulae. 
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